The parallelized Pollard kangaroo method in real quadratic function fields
نویسندگان
چکیده
We show how to use the parallelized kangaroo method for computing invariants in real quadratic function fields. Specifically, we show how to apply the kangaroo method to the infrastructure in these fields. We also show how to speed up the computation by using heuristics on the distribution of the divisor class number, and by using the relatively inexpensive baby steps in the real quadratic model of a hyperelliptic function field. Furthermore, we provide examples for regulators and class numbers of hyperelliptic function fields of genus 3 that are larger than those ever reported before.
منابع مشابه
Speeding up elliptic curve discrete logarithm computations with point halving
Pollard rho method and its parallelized variants are at present known as the best generic algorithms for computing elliptic curve discrete logarithms. We propose new iteration function for the rho method by exploiting the fact that point halving is more efficient than point addition for elliptic curves over binary fields. We present a careful analysis of the alternative rho method with new iter...
متن کاملCatching Kangaroos in Function Fields
1. Introduction In this paper we generalize the parallelized lambda method for computing invariants in real qua-dratic function elds. A basic such invariant is the regulator, which plays an important role in cryptosystems based on real quadratic function elds. For example, in the key-exchange protocol by Scheidler, Stein and Williams SSW96], the regulator provides a measure for the key space; m...
متن کاملOn the real quadratic fields with certain continued fraction expansions and fundamental units
The purpose of this paper is to investigate the real quadratic number fields $Q(sqrt{d})$ which contain the specific form of the continued fractions expansions of integral basis element where $dequiv 2,3( mod 4)$ is a square free positive integer. Besides, the present paper deals with determining the fundamental unit$$epsilon _{d}=left(t_d+u_dsqrt{d}right) 2left.right > 1$$and $n_d$ and $m_d...
متن کاملComparison of Kullback-Leibler, Hellinger and LINEX with Quadratic Loss Function in Bayesian Dynamic Linear Models: Forecasting of Real Price of Oil
In this paper we intend to examine the application of Kullback-Leibler, Hellinger and LINEX loss function in Dynamic Linear Model using the real price of oil for 106 years of data from 1913 to 2018 concerning the asymmetric problem in filtering and forecasting. We use DLM form of the basic Hoteling Model under Quadratic loss function, Kullback-Leibler, Hellinger and LINEX trying to address the ...
متن کاملComputing discrete logarithms in an interval
The discrete logarithm problem in an interval of size N in a group G is: Given g, h ∈ G and an integer N to find an integer 0 ≤ n ≤ N , if it exists, such that h = gn. Previously the best low-storage algorithm to solve this problem was the van Oorschot and Wiener version of the Pollard kangaroo method. The heuristic average case running time of this method is (2 + o(1)) √ N group operations. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 71 شماره
صفحات -
تاریخ انتشار 2002